Answer:
(a) 1.6197
(b) 1.3803
Step-by-step explanation:
(a) Let X denote the number of games the Reds win. If Reds win exactly one it means that in the other two games Reds lost i.e Cubs won. Now, Â the probability of the Reds losing is determined by [tex] 1 -\text{probability of winning} = 1-0.54 = 0.46 [/tex]. So, if X wins exactly [tex]i[/tex] times, then we should multiply the probabilities associated with
[tex]P(X=0) = \binom{3}{0} \times 0.46 \times 0.46 \times 0.46 = 0.0973[/tex]
[tex] P(X=1) = \binom{3}{1} 0.54 \times 0.46 \times 0.46 = 0.3429[/tex]
[tex] P(X=2) = \binom{3}{2} 0.54 \times 0.54 \times 0.46 = 0.4023[/tex]
[tex] P(X=3) = \binom{3}{3} 0.54 \times 0.54 \times 0.54 = 0.1574[/tex]
Now,
[tex] E(X) = \sum_{i=0}^{3} i \times P(X=i) = 1.6197[/tex]
(b) Let Y denote the number of games won by Cubs. Then by the similar logic as above,
[tex] P(Y=3) = \binom{3}{0} 0.46 \times 0.46 \times 0.46 = 0.0973[/tex]
[tex] P(Y=2) = \binom{3}{1} 0.54 \times 0.46 \times 0.46 = 0.3429[/tex]
[tex] P(Y=1) = \binom{3}{2} 0.54 \times 0.54 \times 0.46 = 0.4023[/tex]
[tex] P(Y=0) = \binom{3}{3} 0.54 \times 0.54 \times 0.54 = 0.1574[/tex]
Now
[tex] E(Y) = \sum_{j=0}^{3} j \times P(Y=j) = 1.3803[/tex]