Respuesta :
βΏβββββ¦βββββΏβββββ¦βββββΏ
The answer is: 2(k2β4k)(2c+5)
βΏβββββ¦βββββΏβββββ¦βββββΏ
Step:
* Consider 2ck2+5k2β8ckβ20k. Do the grouping 2ck2+5k2β8ckβ20k=(2ck2+5k2) +(β8ckβ20k), and factor out k2 in the first and β4k in the second group.
* Factor out the common term 2c+5 by using the distributive property.
* Rewrite the complete factored expression.
βΏβββββ¦βββββΏβββββ¦βββββΏ